Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 882
Filtrar
1.
Eur J Med Chem ; 272: 116447, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38714044

RESUMO

Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.

2.
J Transl Med ; 22(1): 418, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702756

RESUMO

The onerous health and economic burden associated with head and neck squamous cell carcinoma (HNSCC) is a global predicament. Despite the advent of novel surgical techniques and therapeutic protocols, there is an incessant need for efficacious diagnostic and therapeutic targets to monitor the invasion, metastasis and recurrence of HNSCC due to its substantial morbidity and mortality. The differential expression patterns of histone deacetylases (HDACs), a group of enzymes responsible for modifying histones and regulating gene expression, have been demonstrated in neoplastic tissues. However, there is limited knowledge regarding the role of HDACs in HNSCC. Consequently, this review aims to summarize the existing research findings and explore the potential association between HDACs and HNSCC, offering fresh perspectives on therapeutic approaches targeting HDACs that could potentially enhance the efficacy of HNSCC treatment. Additionally, the Cancer Genome Atlas (TCGA) dataset, CPTAC, HPA, OmicShare, GeneMANIA and STRING databases are utilized to provide supplementary evidence on the differential expression of HDACs, their prognostic significance and predicting functions in HNSCC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Inibidores de Histona Desacetilases , Histona Desacetilases , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Histona Desacetilases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/enzimologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Terapia de Alvo Molecular , Regulação Neoplásica da Expressão Gênica
3.
Eur J Med Chem ; 271: 116428, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653068

RESUMO

Recent evidence suggests that histone deacetylases (HDACs) are important regulators of autosomal dominant polycystic kidney disease (ADPKD). In the present study, a series of benzothiazole-bearing compounds were designed and synthesized as potential HDAC inhibitors. Given the multiple participation of HDACs in ADPKD cyst progression, we embarked on a targeted screen using HeLa nuclear extracts to identify potent pan-HDAC inhibitors. Compound 26 emerged as the most efficacious candidate. Subsequent pharmacological characterization showed that compound 26 effectively inhibits several HDACs, notably HDAC1, HDAC2, and HDAC6 (IC50 < 150 nM), displaying a particularly high sensitivity towards HDAC6 (IC50 = 11 nM). The selected compound significantly prevented cyst formation and expansion in an in vitro cyst model and was efficacious in reducing cyst growth in both an embryonic kidney cyst model and an in vivo ADPKD mouse model. Our results provided compelling evidence that compound 26 represents a new HDAC inhibitor for the treatment of ADPKD.


Assuntos
Benzotiazóis , Inibidores de Histona Desacetilases , Rim Policístico Autossômico Dominante , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/patologia , Humanos , Animais , Camundongos , Benzotiazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Células HeLa , Histona Desacetilases/metabolismo
4.
Biochim Biophys Acta Gen Subj ; 1868(6): 130614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598971

RESUMO

BACKGROUND: Deregulation of cell death is a common characteristic of cancer, and resistance to this process often occurs in lung cancer. Understanding the molecular mechanisms underlying an aberrant cell death is important. Recent studies have emphasized the involvement of calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) in lung cancer aggressiveness, its influence on cell death regulation remains largely unexplored. METHODS: CAMSAP3 was knockout in lung cancer cells using CRISPR-Cas9 system. Cell death and autophagy were evaluated using MTT and autophagic detection assays. Protein interactions were performed by proteomic analysis and immunoprecipitation. Protein expressions and their cytoplasmic localization were analyzed through immunoblotting and immunofluorescence techniques. RESULTS: This study reveals a significant correlation between low CAMSAP3 expression and poor overall survival rates in lung cancer patients. Proteomic analysis identified high mobility group box 1 (HMGB1) as a candidate interacting protein involved in the regulation of cell death. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs) resulted in increased HMGB1 acetylation and its translocation to the cytoplasm and secretion, thereby inducing autophagic cell death. However, this process was diminished in CAMSAP3 knockout lung cancer cells. Mechanistically, immunoprecipitation indicated an interaction between CAMSAP3 and HMGB1, particularly with its acetylated form, in which this complex was elevated in the presence of TSA. CONCLUSIONS: CAMSAP3 is prerequisite for TSA-mediated autophagic cell death by interacting with cytoplasmic acetylated HMGB1 and enhancing its release. SIGNIFICANT: This finding provides molecular insights into the role of CAMSAP3 in regulating cell death, highlighting its potential as a therapeutic target for lung cancer treatment.


Assuntos
Proteína HMGB1 , Neoplasias Pulmonares , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Acetilação , Autofagia , Linhagem Celular Tumoral , Morte Celular , Células A549 , Ácidos Hidroxâmicos/farmacologia
5.
Sci Rep ; 14(1): 8983, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637684

RESUMO

Histone deacetylases (HDACs) contribute significantly to the initiation, progression, and prognosis of colorectal adenocarcinoma (COAD). Additionally, HDACs regulate the tumor microenvironment, immune escape, and tumor stem cells, and are closely linked to COAD prognosis. We developed a prognostic model for COAD that incorporates HDACs to evaluate their specific roles. The COAD dataset containing clinical and mutation data was collected using the TCGA and GEO databases to obtain genes associated with HDAC. LASSO analysis and univariate and multivariate Cox regression analysis were used to determine the presence of prognostic genes. Multivariate Cox analysis was also used to determine risk scores for HDAC-related features. Furthermore, genomic alterations, immune infiltration, and drug response were compared between high- and low-risk groups. Cellular experiments validated the potential regulatory role of BRD3 on COAD proliferation, migration, and apoptosis. The median risk scores, calculated based on the characteristics, demonstrated a more significant prognostic improvement in patients in the low-risk group. Furthermore, HDAC-related features were identified as important independent prognostic factors for patients with COAD. Additionally, genomic mutation status, immune infiltration, and function, as well as response to immunotherapy and chemotherapy, were found to be associated with risk scores. Subgroup analyses indicate that anti-PD-1 therapy may be beneficial for patients in the low-risk group. Additionally, a decrease in risk score was associated with a decrease in immune infiltration. Finally, HCT116 and HT29 cells exhibited inhibition of BRD3 gene proliferation and migration, as well as promotion of apoptosis. In patients with COAD, HDAC-related characteristics may be useful in predicting survival and selecting treatment.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Prognóstico , Neoplasias do Colo/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Genes Reguladores , Histona Desacetilases/genética , Microambiente Tumoral/genética
6.
Biochem Genet ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637426

RESUMO

In this study, single-cell RNA-seq data were collected to analyze the characteristics of Histone deacetylation factor (HDF). The tumor microenvironment (TME) cell clusters related to prognosis and immune response were identified by using CRC tissue transcriptome and immunotherapy cohorts from public repository. We explored the expression characteristics of HDF in stromal cells, macrophages, T lymphocytes, and B lymphocytes of the CRC single-cell dataset TME and further identified 4 to 6 cell subclusters using the expression profiles of HDF-associated genes, respectively. The regulatory role of HDF-associated genes on the CRC tumor microenvironment was explored by using single-cell trajectory analysis, and the cellular subtypes identified by biologically characterized genes were compared with those identified by HDF-associated genes. The interaction of HDF-associated gene-mediated microenvironmental cell subtypes and tumor epithelial cells were explored by using intercellular communication analysis, revealing the molecular regulatory mechanism of tumor epithelial cell heterogeneity. Based on the expression of feature genes mediated by HDF-related genes in the microenvironment T-cell subtypes, enrichment scoring was performed on the feature gene expression in the CRC tumor tissue transcriptome dataset. It was found that the feature gene scoring of microenvironment T-cell subtypes (HDF-TME score) has a certain predictive ability for the prognosis and immunotherapy benefits of CRC tumor patients, providing data support for precise immunotherapy in CRC tumors.

7.
J Mol Neurosci ; 74(2): 34, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565829

RESUMO

Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, ß-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.


Assuntos
Histona Acetiltransferases , Histonas , Animais , Camundongos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acetilação , Hipocampo/metabolismo
8.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675404

RESUMO

Histone deacetylases (HDACs) are enzymes that remove acetyl groups from ɛ-amino of histone, and their involvement in the development and progression of cancer disorders makes them an interesting therapeutic target. This study seeks to discover new inhibitors that selectively inhibit HDAC enzymes which are linked to deadly disorders like T-cell lymphoma, childhood neuroblastoma, and colon cancer. MOE was used to dock libraries of ZINC database molecules within the catalytic active pocket of target HDACs. The top three hits were submitted to MD simulations ranked on binding affinities and well-occupied interaction mechanisms determined from molecular docking studies. Inside the catalytic active site of HDACs, the two stable inhibitors LIG1 and LIG2 affect the protein flexibility, as evidenced by RMSD, RMSF, Rg, and PCA. MD simulations of HDACs complexes revealed an alteration from extended to bent motional changes within loop regions. The structural deviation following superimposition shows flexibility via a visual inspection of movable loops at different timeframes. According to PCA, the activity of HDACs inhibitors induces structural dynamics that might potentially be utilized to define the nature of protein inhibition. The findings suggest that this study offers solid proof to investigate LIG1 and LIG2 as potential HDAC inhibitors.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38608232

RESUMO

Purpose: Previously, we identified increased retinal degeneration and cytokine response in a mouse model of dry age-related macular degeneration (AMD) in the presence of systemic inflammation from rheumatoid arthritis (RA). Histone deacetylases (HDACs) regulate cytokine production by reducing acetylation and are found to be dysregulated in inflammatory diseases, including RA and AMD. Therefore, this current study investigates the effect of HDAC inhibition on AMD progression in the presence of systemic inflammation. Methods: Collagen induced arthritis (CIA) was induced in C57BL6J mice, followed by sodium iodate (NaIO3)-induced retinal degeneration. Mice were treated with a selective HDAC class I inhibitor, MS-275, and retinal structure [optical coherence tomography (OCT)], function (electroretinography), and molecular changes quantitative real-time polymerase chain reaction (RT-qPCR, Western Blot) were assessed. Results: NaIO3 retinal damage was diminished in CIA mice treated with MS-275 (P ≤ 0.05). While no significant difference was observed in retinal pigment epithelium (RPE) function, a trend in increased c-wave amplitude was detected in CIA + NaIO3 mice treated with MS-275. Finally, we identified decreased Hdac1, Hdac3, and Cxcl9 expression in CIA + NaIO3 mouse RPE/choroid when treated with MS-275 (P ≤ 0.05). Conclusions: Our data demonstrate that HDAC inhibition can reduce the additive effect of NaIO3-induced retinal degeneration in the presence of systemic inflammation by CIA as measured by OCT analysis. In addition, HDAC inhibition in CIA + NaIO3 treated mice resulted in reduced cytokine production. These findings are highly innovative and provide additional support to the therapeutic potential of HDAC inhibitors for dry AMD treatment.

10.
Diabetes Metab J ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514922

RESUMO

Histone deacetylase 4 (HDAC4), a class IIa HDAC, has gained attention as a potential therapeutic target in treating inflammatory and metabolic processes based on its essential role in various biological pathways by deacetylating non-histone proteins, including transcription factors. The activity of HDAC4 is regulated at the transcriptional, post-transcriptional, and post-translational levels. The functions of HDAC4 are tissue-dependent in response to endogenous and exogenous factors and their substrates. In particular, the association of HDAC4 with non-histone targets, including transcription factors, such as myocyte enhancer factor 2, hypoxia-inducible factor, signal transducer and activator of transcription 1, and forkhead box proteins, play a crucial role in regulating inflammatory and metabolic processes. This review summarizes the regulatory modes of HDAC4 activity and its functions in inflammation, insulin signaling and glucose metabolism, and cardiac muscle development.

11.
Mol Biol Rep ; 51(1): 413, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472555

RESUMO

In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.


Assuntos
Histonas , Plantas , Histonas/genética , Acetilação , Plantas/genética , Processamento de Proteína Pós-Traducional , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo
12.
Curr Res Struct Biol ; 7: 100136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463934

RESUMO

Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/ß arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.

13.
J Mol Biol ; 436(9): 168541, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492719

RESUMO

Interaction of transcription factor myocyte enhancer factor-2 (MEF2) family members with class IIa histone deacetylases (HDACs) has been implicated in a wide variety of diseases. Though considerable knowledge on this topic has been accumulated over the years, a high resolution and detailed analysis of the binding mode of multiple class IIa HDAC derived peptides with MEF2D is still lacking. To fulfil this gap, we report here the crystal structure of MEF2D in complex with double strand DNA and four different class IIa HDAC derived peptides, namely HDAC4, HDAC5, HDAC7 and HDAC9. All class IIa HDAC derived peptides form extended amphipathic α-helix structures that fit snugly in the hydrophobic groove of MEF2D domain. Binding mode of class IIa HDAC derived peptides to MEF2D is very similar and occur primarily through nonpolar interactions mediated by highly conserved branched hydrophobic amino acids. Further studies revealed that class IIa HDAC derived peptides are unstructured in solution and appear to adopt a folded α-helix structure only upon binding to MEF2D. Comparison of our peptide-protein complexes with previously characterized structures of MEF2 bound to different co-activators and co-repressors, highlighted both differences and similarities, and revealed the adaptability of MEF2 in protein-protein interactions. The elucidation of the three-dimensional structure of MEF2D in complex with multiple class IIa HDAC derived peptides provide not only a better understanding of the molecular basis of their interactions but also have implications for the development of novel antagonist.


Assuntos
DNA , Histona Desacetilases , Fatores de Transcrição MEF2 , Peptídeos , Humanos , Sequência de Aminoácidos , Cristalografia por Raios X , DNA/metabolismo , DNA/química , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína
14.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400742

RESUMO

Activation of NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) has been associated with multiple chronic pathologies, including diabetes, atherosclerosis, and rheumatoid arthritis. Moreover, histone deacetylases (HDACs), specifically HDAC6 is required for the NLRP3 inflammasome to assemble and activate. Thus, NLRP3 serves as an attractive target for the development of novel therapeutic approaches. Several companies are now attempting to develop specific modulators of the NLRP3 inflammasome, but only a handful of small molecules of NLRP3 inflammasome inhibitors, such as MCC950 and Tranilast, are currently available for clinical use. However, their use is limited due to severe side effects and short half-lives. Thus, the repurposing of FDA-approved drugs with NLRP3 inhibitory activity is needed. The present study was aimed at repurposing preexisting drugs that might act as safe and effective NLRP3 inhibitors. A library of 2,697 FDA-approved drugs was screened for binding with NLRP3 (PDB: 7ALV) using Glide (Schrödinger). The top seven FDA-approved drugs with potential binding affinities were selected based on docking scores and subjected to ADMET profiling using pkCSM and SwissADME. The binding of the ADMET-favorable FDA-approved drugs to NLRP3 was validated using MMGBSA (Prime) and Molecular Dynamics (Desmond) in the Schrödinger suite. ADMET profiling revealed that of the seven best docking drugs, empagliflozin and citicoline had good drug-likeness properties. Moreover, MMGBSA analysis and molecular dynamics demonstrated that empagliflozin and citicoline exhibited stable ligand-NLRP3 interactions in the presence of solvents. This study sheds light on the ability of various FDA-approved drugs to act as NLRP3 inhibitors.Communicated by Ramaswamy H. Sarma.

15.
ACS Chem Neurosci ; 15(6): 1234-1241, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38416107

RESUMO

Brain amyloid-ß (Aß) governs the pathogenic process of Alzheimer's disease. Clinical trials to assess the disease-modifying effects of inhibitors or modulators of ß- and γ-secretases have not shown clinical benefit and can cause serious adverse events. Previously, we found that the interleukin-like epithelial-to-mesenchymal transition inducer (ILEI, also known as FAM3C) negatively regulates the Aß production through a decrease in Aß immediate precursor, without the inhibition of ß- and γ-secretase activity. Herein, we found that MS-275, a benzamide derivative that is known to inhibit histone deacetylases (HDACs), exhibits ILEI-like activity to reduce Aß production independent of HDAC inhibition. Chronic MS-275 treatment decreased Aß deposition in the cerebral cortex and hippocampus in an Alzheimer's disease mouse model. Overall, our results indicate that MS-275 is a potential therapeutic candidate for efficiently reducing brain Aß accumulation.


Assuntos
Doença de Alzheimer , Piridinas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Benzamidas/farmacologia , Precursor de Proteína beta-Amiloide
16.
Acta Histochem ; 126(2): 152144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38382218

RESUMO

OBJECTIVE: Histone-deacetylases (HDACs) are epigenetic modulators involved in the control of gene expression. No data are available on the expression or subcellular localization of HDACs in salivary glands. The present study aims to examine the subcellular distribution of HDACs in salivary glands during postnatal development. DESIGN: The major salivary glands of C57/BL6 mice were separately removed at 10, 25, 30,60 and 90 days after birth. Hematoxylin-eosin (H&E) and immunohistochemical staining were performed for HDACs. Gene Expression of HDACs in C57BL/6. NOD-Aec1Aec2 mice salivary glands during the development of Sjögren's syndrome-like illness were also analyzed by using the gene expression datasets (GSE 15640). RESULTS: In the mice salivary gland, HDACs were found to have different localization patterns at various stages of development (10, 25, 30, 60, and 90 days). Apart from HDAC6, ductal cells of salivary glands were the primary sites for HDAC localization. HDAC2, 8, 5, 10 and 11 were expressed at high levels in the salivary gland after birth while HDAC6 showed no expression during postnatal development. This suggests that these HDAC subtypes may have different roles in salivary gland function. In the context of Sjögren's syndrome-like illness, HDAC 2, 8 and 10 showed low expression while HDAC1, 6,5,3 and 11 had relatively high expression in the salivary gland. CONCLUSIONS: This study has provided an important reference for understanding the spatiotemporal-specific expression of HDACs in the salivary gland. These results offer new clues for the experimenters and hold promise for developing innovative therapeutic strategies for salivary gland-related diseases.


Assuntos
Síndrome de Sjogren , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Histona Desacetilases/genética , Histonas , Glândulas Salivares
17.
J Exp Clin Cancer Res ; 43(1): 60, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414061

RESUMO

BACKGROUND: Cancer cells can overexpress CD47, an innate immune checkpoint that prevents phagocytosis upon interaction with signal regulatory protein alpha (SIRPα) expressed in macrophages and other myeloid cells. Several clinical trials have reported that CD47 blockade reduces tumor growth in hematological malignancies. However, CD47 blockade has shown modest results in solid tumors, including melanoma. Our group has demonstrated that histone deacetylase 6 inhibitors (HDAC6is) have immunomodulatory properties, such as controlling macrophage phenotype and inflammatory properties. However, the molecular and cellular mechanisms controlling these processes are not fully understood. In this study, we evaluated the role of HDAC6 in regulating the CD47/SIRPα axis and phagocytosis in macrophages. METHODS: We tested the role of HDAC6is, especially Nexturastat A, in regulating macrophage phenotype and phagocytic function using bone marrow-derived macrophages and macrophage cell lines. The modulation of the CD47/SIRPα axis and phagocytosis by HDAC6is was investigated using murine and human melanoma cell lines and macrophages. Phagocytosis was evaluated via coculture assays of macrophages and melanoma cells by flow cytometry and immunofluorescence. Lastly, to evaluate the antitumor activity of Nexturastat A in combination with anti-CD47 or anti-SIRPα antibodies, we performed in vivo studies using the SM1 and/or B16F10 melanoma mouse models. RESULTS: We observed that HDAC6is enhanced the phenotype of antitumoral M1 macrophages while decreasing the protumoral M2 phenotype. In addition, HDAC6 inhibition diminished the expression of SIRPα, increased the expression of other pro-phagocytic signals in macrophages, and downregulated CD47 expression in mouse and human melanoma cells. This regulatory role on the CD47/SIRPα axis translated into enhanced antitumoral phagocytic capacity of macrophages treated with Nexturastat A and anti-CD47. We also observed that the systemic administration of HDAC6i enhanced the in vivo antitumor activity of anti-CD47 blockade in melanoma by modulating macrophage and natural killer cells in the tumor microenvironment. However, Nexturastat A did not enhance the antitumor activity of anti-SIRPα despite its modulation of macrophage populations in the SM1 tumor microenvironment. CONCLUSIONS: Our results demonstrate the critical regulatory role of HDAC6 in phagocytosis and innate immunity for the first time, further underscoring the use of these inhibitors to potentiate CD47 immune checkpoint blockade therapeutic strategies.


Assuntos
Ácidos Hidroxâmicos , Melanoma , Neoplasias , Compostos de Fenilureia , Humanos , Camundongos , Animais , Antígeno CD47/metabolismo , Fagocitose , Imunoterapia/métodos , Neoplasias/patologia , Microambiente Tumoral , Desacetilase 6 de Histona
18.
Plant Physiol Biochem ; 207: 108405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354529

RESUMO

Low temperatures can severely affect plant growth and reduce their ornamental value. A family of plant histone deacetylases allows plants to cope with both biotic and abiotic stresses. In this study, we screened and cloned the cDNA of DgSRT2 obtained from transcriptome sequencing of chrysanthemum leaves under low-temperature stress. Sequence analysis showed that DgSRT2 belongs to the sirtuin family of histone deacetylases. We obtained the stable transgenic chrysanthemum lines OE-2 and OE-12. DgSRT2 showed tissue specificity in wild-type chrysanthemum and was most highly expressed in leaves. Under low-temperature stress, the OE lines showed higher survival rates, proline content, solute content, and antioxidant enzyme activities, and lower relative electrolyte leakage, malondialdehyde, hydrogen peroxide, and superoxide ion accumulation than the wild-type lines. This work suggests that DgSRT2 can serve as an essential gene for enhancing cold resistance in plants. In addition, a series of cold-responsive genes in the OE line were compared with WT. The results showed that DgSRT2 exerted a positive regulatory effect by up-regulating the transcript levels of cold-responsive genes. The above genes help to increase antioxidant activity, maintain membrane stability and improve osmoregulation, thereby enhancing survival under cold stress. It can be concluded from the above work that DgSRT2 enhances chrysanthemum tolerance to low temperatures by scavenging the ROS system.


Assuntos
Chrysanthemum , Espécies Reativas de Oxigênio , Temperatura , Chrysanthemum/genética , Superóxidos/metabolismo , Estresse Fisiológico/genética , Resposta ao Choque Frio , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Mol Plant Pathol ; 25(2): e13429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353606

RESUMO

Ustilaginoidea virens is the causal agent of rice false smut, which has recently become one of the most important rice diseases worldwide. Ustilaginoidins, a major type of mycotoxins produced in false smut balls, greatly deteriorates grain quality. Histone acetylation and deacetylation are involved in regulating secondary metabolism in fungi. However, little is yet known on the functions of histone deacetylases (HDACs) in virulence and mycotoxin biosynthesis in U. virens. Here, we characterized the functions of the HDAC UvHOS3 in U. virens. The ΔUvhos3 deletion mutant exhibited the phenotypes of retarded growth, increased mycelial branches and reduced conidiation and virulence. The ΔUvhos3 mutants were more sensitive to sorbitol, sodium dodecyl sulphate and oxidative stress/H2 O2 . ΔUvhos3 generated significantly more ustilaginoidins. RNA-Seq and metabolomics analyses also revealed that UvHOS3 is a key negative player in regulating secondary metabolism, especially mycotoxin biosynthesis. Notably, UvHOS3 mediates deacetylation of H3 and H4 at H3K9, H3K18, H3K27 and H4K8 residues. Chromatin immunoprecipitation assays indicated that UvHOS3 regulates mycotoxin biosynthesis, particularly for ustilaginoidin and sorbicillinoid production, by modulating the acetylation level of H3K18. Collectively, this study deepens the understanding of molecular mechanisms of the HDAC UvHOS3 in regulating virulence and mycotoxin biosynthesis in phytopathogenic fungi.


Assuntos
Histonas , Hypocreales , Micotoxinas , Virulência , Metabolismo Secundário
20.
Heliyon ; 10(2): e24406, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304784

RESUMO

Despite substantial investments in anti-glioblastoma (GBM) drug discovery over the last decade, progress is limited to preclinical stages, with clinical studies frequently encountering obstacles. Angiogenic and histone deacetylase inhibitors (HDACi) have shown profound results in pre-clinical studies. Investigating a multicomponent anti-cancer remedy that disrupts the tumor angiogenic blood vessels and simultaneously disrupts HDACs, while inducing minimal side effects, is critically needed. The crude extracts derived from medicinal plants serve as a renewable reservoir of anti-tumor drugs, exhibiting reduced toxicity compared to chemically synthesized formulations. Calotropis procera is a traditional medicinal plant, and its anticancer potential against many cancer cell lines has been reported, however its antiangiogenic and HDAC inhibitory action is largely unknown. The anticancer activity of methanol leaf extract of C. procera was tested in three types of human glioblastoma cell lines. Wild-type and transgenic zebrafish embryos were used to evaluate developmental toxicity and angiogenic activity. A human angiogenic antibody array was used to profile angiogenic proteins in the U251 GM cell line. A real-time reverse transcriptase polymerase chain reaction (RT PCR) assay was used to detect the differential expression of eleven HDAC genes in U251 cells treated with C. procera extract. The extract significantly reduced the proliferation of all three types of GBM cell lines and the cytotoxicity was found to be more pronounced in U251 GM cells, with an IC50 value of 2.63 ± 0.23 µg/ml, possibly by arresting the cell cycle at the G2/M transition. The extract did not exhibit toxic effects in zebrafish embryos, even at concentrations as high as 1000 µg/ml. The extract also inhibited angiogenic blood vessel formation in the transgenic zebrafish model in a dose-dependent manner. The results from the angiogenic antibody array have suggested novel angiogenesis targets that can be utilized to treat GBM. Real-time RT PCR analysis has shown that C. procrea extract caused an upregulation of HDAC5, 7, and 10, while the mRNA of HDAC1, 2, 3 and 8 (Class I HDACs), and HDAC4, 6, and 9 (Class II) were downregulated in U251 GM cells. The cytotoxicity of the C. procera extract on GBM cell lines could be due to its dual action by regulation of both tumor angiogenesis and histone deacetylases enzymes. Through this study, the C. procera leaf extract has been suggested as an effective remedy to treat GBM with minimal toxicity. In addition, various novel angiogenic and HDAC targets has been identified which could be helpful in designing better therapeutic strategies to manage glioblastoma multiforme in human patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...